

MODULE SPECIFICATION

Module Tit	le:	The Physical W	/orld		Leve	el:	5	Cred Value		20	
Module code:		SCI521	New	✓		Code of module being replaced:			N/A		
		00.02	Existing								
Cost Centre: GAFS		JACS3 code:		F170							
Trimester(s) in which to be offered:			1	With	effec	t	Sept	ember	16		
School: Applied Science, Computing & Engineering				lodule eader:		Dr Jixin \	⁄ang				
Scheduled learning and teaching hours 50 hrs						ırs					
Guided independent study				150 hrs							
Placement				0 hrs							
Module duration (total hours) 200 hrs						ırs					
D	- (-)	la salalah (a ba a							.	Ontin	
Programme(s) in which to be offered BSc (Hons) Chemistry with Education					Core	Option	n				
BSc (Hons) Chemistry with Green Nanotechnology						/					
Office use only											
Initial approval July 2016											
APSC approval of modification July 2016 Have any derogations received SQC approval?				Versic Yes □		√					

Module Aims

In this module the student will be taught the applications of the laws of thermodynamics in relation to phase transformations and phase equilibria. Molecular motion in gases and liquids will be discussed. The student will be familiarised with quantum mechanics and the occurrence of various types of molecular energy levels. The kinetics of chemical reactions and catalysis form the concluding part of the course.

Intended Learning Outcomes

At the end of this module, students will be able to:

- 1. Correlate the laws of thermodynamics to the physical transformations of substances.
- 2. Differentiate between the various molecular energy levels on the basis of quantum theory.
- 3. Demonstrate the effect of catalysis on the energetics of a chemical reaction by applying the knowledge of chemical kinetics.
- 4. Explore and explain the physical world in a broad scope based on the knowledge learned in this module to solve practice problems.

Key skills for employability

KS1	Written, oral and media communication skills
KS2	Leadership, team working and networking skills
KS3	Opportunity, creativity and problem solving skills
KS4	Information technology skills and digital literacy
KS5	Information management skills
KS6	Research skills
KS7	Intercultural and sustainability skills
KS8	Career management skills
KS9	Learning to learn (managing personal and professional development, self-
	management)
KS10	Numeracy

At	the end of this module, students will be able to	Key Skills		
1	Correlate the laws of thermodynamics to the physical	KS1	KS3	
	transformations of substances.	KS5	KS10	
2		KS1	KS3	
	Differentiate between the various molecular energy levels on the basis of quantum theory.	KS5	KS10	
3	Demonstrate the effect of catalysis on the energetics of a chemical reaction by applying the knowledge of chemical	KS1	KS3	
	kinetics.	KS5	KS10	

	Explore and explain the physical world in a broad scope based on the knowledge learned in this module to solve practice	KS3	KS5
	problems.	KS6	KS10

Transferable/key skills and other attributes

- Literacy
- Numeracy
- · Problem solving
- Time management
- IT skills
- Note Taking

Derogations

None

Assessment: Please give details of indicative assessment tasks below.

Assessment 1: Coursework of approximately 10 short questions on problem solving in physical chemistry, plus a short research essay (50%)

Assessment 2: Exam to access the knowledge covered in this module (2 hours) (50%)

Please indicate the type(s) of assessment (eg examination, oral, coursework, project) and the weighting of each (%). Normally, each intended learning outcome should be assessed only once.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1-4	Coursework	50%		1,500
2	1-3	Examination	50%	2 hours	

Learning and Teaching Strategies:

Methods of delivery:

Lectures

Problem solving workshops

Directed study via Moodle VLE

Student directed study

The basic factual material will be delivered by means of lectures. Lectures will be supported by workshops in which the students will be able to test their knowledge and understanding of the concepts covered. Students will further be able to develop their knowledge and

understanding by reading additional course material and attempting problem sets and quizzes on Moodle VLE. Independent student-directed learning will enable students to delve more deeply into the subject material, enhancing their learning, while developing their IT skills.

Syllabus outline:

- The laws of thermodynamics: physical significance of entropy, Maxwell relations, thermodynamic equations of state, chemical potential, temperature and pressure; phase rule, states of matter and phase diagrams
- Quantum Theory: postulates of quantum mechanics, de Broglie equation, Schrödinger equation; applications of wave mechanics
- Molecular motion in gases and liquids, diffusion, kinetic theory of gases
- Introduction to statistical thermodynamics
- Chemical kinetics: kinetics of elementary and complex reactions
- Catalysis: heterogeneous and homogeneous catalysis; rate and selectivity
- Introduction to surface chemistry

Bibliography:

Essential reading

Atkins, P. and De Paula, J. (2014) Physical Chemistry. 10th Edition. Oxford: Oxford University Press.

Other indicative reading

Levine, I. N. (2008) Physical Chemistry. 6th Edition. USA: McGraw-Hill Higher Education.